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Abstract—Despite being a comparatively uncommonly 

encountered near-field antenna measurement configuration, 

plane-polar systems are important as they present certain 

distinctive and very attractive attributes.  These include 

mechanical simplicity and the ability to acquire near-field data 

across acquisition intervals that are potentially far larger than 

the measurement system itself or the test chamber in which it is 

situated.  They do however require specialist near-field to far-

field data transformation algorithms which can pose 

implementation challenges in terms of numerical accuracy and 

computational efficiency.  This paper presents a new, efficient, 

rigorous, data transformation algorithm that can also transform 

data acquired over rotationally symmetric, non-planar 

measurement surfaces.  The new, accelerated, Fourier-Bessel 

based transform is verified through numerical simulation and its 

successful application in transforming measured data of a high 

gain, passive, space-borne synthetic aperture radar (SAR) 

antenna is highlighted. 

I. INTRODUCTION 

The plane-polar approach for near-field antenna 
measurements has attracted a great deal of interest in the open 
literature during the past four decades [1, 2, 3, 4, 5, 6, 7] since 
its first inception.  The measurement system is formed from the 
intersection of a linear translation stage and a rotation stage 
with the combination of the axes enabling the scanning near-
field probe to trace out a radial vector in two-dimensions 
facilitating the acquisition of samples across the surface of a 
planar disk, typically being tabulated on a set of concentric 
rings, as shown in Figure 1.  In its classical form, the probe 
moves in a fixed radial direction and the AUT rotates axially.  
However, with the ever more prevalent utilization of industrial 
multi-axis robots or uninhabited air vehicles (UAV), i.e. 
drones, being harnessed for the task of mechanical probe 
positioning; non-planar, polar measurements are feasible and 
are becoming more common.  An example test system 
comprising two industrial multi-axis robots can be seen 
illustrated in Figure 1.  Here, robot 1, R1, is used for plane-
polar radius (or diameter) scanning of the probe along a circa 6 
m long radius, which provides a 12 m diameter plane polar 
acquisition disk scan size.  Robot 2, R2, holds the AUT and is 

used to provide the 360° φ-axis rotation.  A clear advantage of 

this measurement concept, and the accompanying transform 
presented below, is that it enables acquisitions to be taken 
easily over rotationally symmetrical, conformal surfaces, i.e. 
admitting the ability of utilizing non-planar polar geometries 
thereby minimizing truncation errors and maximizing the 
ability of the system to predict wide-out side-lobe patterns 
without needing to increase the measurement size. 

 

Figure 1.  Illustration of plane-polar antenna measurement using 

dual multi-axis industrial robots 

The successful deployment of this concept is clearly 
predicated upon the availability of a suitable data 
transformation algorithm.  In this paper, an accelerated, 
rigorous, near-field to far-field transform that is based on a 
Fourier-Bessel expansion [4] is developed and presented that 
can be employed in the above circumstances.  This highly 
efficient, robust, transform enables near-field data acquired on 
planar, and non-planar, surfaces to be transformed to the far-
field providing the acquisition surface is rotationally symmetric 
about some fixed point in the x,y-plane with the z distance 
being purely a function of the radial displacement.  The 
transform efficiency stems from the utilization of the fast 
Fourier transform (FFT) algorithm with the rigor and 
robustness deriving from the avoidance of recourse to 
approximation, e.g. piecewise polynomial interpolation.  
Specifically, this algorithm does not rely upon approximation, 
i.e. interpolation, to re-grid the plane-polar measured data prior 



to FFT processing.  This transform is numerically equivalent to 
a discrete Fourier transform, but is approximately 1000 times 
faster, and can rigorously transform near-field data of 
electrically large antennas to the far-field in a few seconds.  
Section 2 presents an overview of the transformation algorithm 
with results of the validation campaign and actual range 
measurements being presented in Section 3.  The paper 
concludes with Section 4 which includes a summary of the 
results, and the transform’s assumptions and requirements. 

II. OVERVIEW OF THE FOURIER BESSEL POLAR NEAR-

FIELD TO FAR-FIELD TRANSFORM 

As the transformation from Cartesian to plane-polar co-
ordinates is a one-to-one mapping, the analytic functions are 
continuous, the necessary partial derivatives exist and are 
continuous, and assuming the initial boundary conditions are 

specified so that ρ′ ≥ 0 (this is not a practical limitation) with x 

= ρ′cosφ′, y = ρ′sinφ′, with z = arbitrary but fixed, then through 
a multi-dimensional exchange of variables, we can for each 
tangential component relate the angular spectrum to the near 
electric field through [8], 
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where we have used primed variables to denote the near-
field coordinates.  This expression can be evaluated 
numerically as, through an application of the sampling 
theorem, it can be represented as a summation for the case 
where band-limited antennas are considered [6].  With this 
noted, it is desirable to present this in an alternative form 
allowing us to harness the far more efficient FFT algorithm. 

Following reference [4], and for the sake of simplicity, let 
us first assume that the probe is omnidirectional so that we may 
omit probe compensation.  Note, this restriction is introduced 
for the sake of pedagogy and will be relaxed shortly to obtain 
the general, accelerated, probe-compensated plane-polar near-
field to far-field transformation.  Let us now consider 
expressing the integral in the form of a correlation process [9] 
which can be considered to form the basis of any antenna 
pattern measurement.  This stems from recognizing that the 
correlation of the measured field of some antenna to a plane-

wave propagating in an arbitrary, but known, direction, say (θ, 

φ), is the far-field pattern of that antenna, in that direction.  To 
further simply the development, let us also consider the 
contribution to the far-field pattern of just a single ring of near-

field data taken at measurement radius ρ′.  Thus, the far-field 

contribution of this nth ring at radius ρ′ is, 

 ( ) ( ) ( ), , ,n n n nF f Lθ φ φ ρ φ φ ρ θ φ φ′ ′ ′ ′ ′= = = ⊗ =  (2) 

Here ⊗ denotes the correlation operation [9] and where, in 
the one-dimensional azimuthal case considered here, the 
coupling plane-wave can be expressed as, 
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The one-dimensional FFT can be used to implement the 

cross-correlation operation numerically by using the Wiener-

Khintchine theorem [9], where if the Fourier transform of R(τ) 

is F(ω) then, 
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Thus, we may write that, 
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Here, ℑ denotes the Fourier transform operation and ℑ-1 
denotes the inverse operation.  Note, as we take the cosine of 

the variable φ′, and as the cosine function is an even function, 

we may omit the minus sign on the variable φ′.  The linearity of 
the inverse Fourier transform operation enables us to obtain the 
complete far-field pattern by summation across each of the N 
rings of near-field plane-polar data prior to taking the inverse 
Fourier transform.  Thus, we may write the total far-field 
pattern as the linear superposition, 
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 (6) 
Here N is the number of near-field rings of plane-polar data 

and the “dot” symbol, ⋅, merely denotes scalar multiplication.  
Thus, the plane-polar near-field to far-field transform can be 
expressed compactly as, 
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Here, d denotes the separation distance between the AUT 
aperture and the plane-polar acquisition disk located at the tip 

of the near-field probe, δρ′ denotes the sample spacing in the 

radial axis, and δφ′ denotes the sample spacing in the angular, 
i.e. azimuthal axis.  The Fourier transforms and the inverse 
Fourier transform can be evaluated efficiently using the one-
dimensional FFT.  In the event the number of angular samples 
is not an integer power of two, then a mixed-radix version of 
the FFT and inverse fast Fourier transform (IFFT) algorithms 

must be utilized.  As has been noted before [8], the ρ′ = 0 cut, 
i.e. which is when n = 1, is a special case where the elemental 
area of the “cap” should be used to weight the correlated cut 
prior to it being summed.  Thus, we may obtain the plane-wave 
spectrum from plane-polar near-field data using an efficient 
FFT based algorithm.  Two points are important to recognize 
here.  Firstly, the series of one-dimensional mixed-radix 
transforms of the near-electric-field components can be pre-
computed and stored prior to entering the radial summation.  
Secondly, the Fourier transform of the Ln can be computed 
analytically which greatly increases the accuracy and speed of 
this transform as there is no need to perform a, comparatively, 
computationally intensive one-dimensional mixed-radix FFT 

N×nθ times.  Additionally, the series of inverse one-
dimensional Fourier transforms can be sped-up significantly by 
zero-padding the Fourier coefficient data to make the number 
of points comprise an integer power of two, whereupon the far 
more efficient power-of-two inverse fast Fourier transform can 
be brought to bear. 



To establish the analytical transformation of the Ln 
function, and so as to simplify the notation, let us write the 
complex exponential in terms of new variables as, 
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This can be expanded in terms of a series of Bessel 
functions as, 

 

( )

( ) ( )( ( ) ( )

( ) ( ) )

( ) ( )( ( ) ( )

( ) ( ) )

cos

0

2 4

6

1 3

5

2 cos 2 cos 4

cos 6

2 cos cos 3

cos 5

je J

J J

J

j J J

J

α φ α

α φ α φ

α φ

α φ α φ

α φ

′
=

′ ′− −

′+ + ⋅⋅⋅

′ ′+ −

′+ + ⋅⋅⋅
 (9) 

A comparison of this series and the analytical function can 
be seen presented in the following figure where just the first 15 
terms have been used in the Bessel function series. 

 
Figure 2.  Comparison of series solution and complex 

exponential function. Left: real part; Right: imaginary part. 

The Fourier transform of this series can then be obtained by 
noting that the Bessel functions are a constant with respect to 

the Fourier variable, φ′, thus the first term of the series 
corresponds to a Dirac delta function scaled by the amplitude 

of the zeroth order Bessel function J0(α), and located at the 
Nyquist frequency, and secondly that the Fourier transform of a 
cosine function comprises a pair of Dirac delta functions 
positioned at complimentary frequencies about the Nyquist 
frequency.  Thus, the remaining terms in the series each 
transform to a pair of discrete integer frequencies with 
amplitude scaled by the associated Bessel function, i.e., 
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This enables the rapid, accurate, computation of this 

transform and can be seen illustrated with the black trace in 
Figure 3 where there were 60 points in each ring of near-field 
data, 30 terms were used in the series, and a mixed-radix one-
dimensional FFT was used to transform the complex 
exponential function which is denoted by the red trace and 
included as a comparison. 

It is important to recognize that in practice; Bessel 
functions such as these are computed using recurrence relations 
requiring only the first couple of terms in the series to be 
directly computed, with all other terms being obtained from 
these values with renormalization utilized to retain numerical 
precision when high order coefficients are required. 

 
Figure 3.  Comparison of Fourier transformed complex 

exponential function and analytical solution, 

Left: real part; Right: imaginary part. 

A further, very powerful, consequence of this formulation 
is that it is automatically in a form for processing data that is 
acquired on non-planar surfaces providing only that the smooth 
acquisition surface is rotationally symmetrical about the 
positive z-axis, i.e. providing it is of the form, 

 ( ) ( )2 2,n n n n nz z x yρ φ′ ′ ′ ′ ′ ′= +  (11) 

Here z′n is a smooth, single valued, function of the radius 

coordinate ρ′n only.  Thus, the spectrum can be expressed as, 
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Where the corresponding far-electric-fields can be obtained 

from [8], 
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This is of particular utility to drone testing where 
acquisitions are routinely taken in a series of concentric rings 
around AUT where each ring is at a different altitude.  
Additionally, the zero-padding processing utilized within this 
accelerated transform means that each ring may be acquired 
with a different number of points which is important as the 
number of acquired data-points has a bearing on the flight-time 
of the drone which is crucially dependent upon, and limited by, 
battery life.  The longitudinal field component can be obtained 
from the plane-wave condition and the magnetic field can then 
be obtained from the electric field and the impedance of free-
space.  The fields may be resolved onto whichever polarization 
basis desired, e.g. Ludwig’s 3rd definition [8], etc. and can be 
converted to left- and right-hand circular polarization 
components, tilt angle, polarization ratios if required.  As noted 
at the beginning of this development, the probe corrected far-
electric-field data may be obtained from these spectra using 
standard planar probe pattern compensation providing a 
rotationally symmetrical, i.e. first order, probe is used; or 
alternatively, if a more general near-field probe is utilized but 
counter rotated during the acquisition process so as to remain 
polarization matched to the AUT during the acquisition when 
taking each orthogonal tangential near-field component [8]. 

The next section presents results of the validation of this 
transform before progressing to examine results from actual 
range measurements. 
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III. RESULTS 

The use of this Fourier Bessel transform can be illustrated 
by taking simulated plane-polar near-field data and 
transforming it to the far-field whereupon it can be compared 
with fields that we computed using a standard discrete Fourier 
transform (DFT) [8] and those far-fields obtained directly from 
the simulation software.  Figure 4 present simulated plane-
polar near-electric-field components of a parabolic reflector 
antenna radiating at C-band for the two orthogonal tangential 
polarizations Ex (left) and Ey (right).  Here, the horizontal axis 

is the measurement radius ρ′ and the vertical axis is the polar 

angle φ′ in degrees. 

 
Figure 4.  x- and y-polarised near-electric fields of a offset-

reflector antenna tabulated on a plane-polar grid. 

The algorithm developed in Section 2 was used to 
transform the near-electric-field data to the far-field with the 
resulting data being compared to data provided by a DFT and 
ideal data provided directly in the far-field from reflector 
antenna simulation software.  An off-pointed parabolic 
reflector antenna was used as the AUT where the rotation of 
the antenna with respect to the acquisition plane was deliberate 
and intended to make sure that any symmetry within the 
simulated measurement would be broken. 

 

Figure 5.  Comparison iso-level plot of co-polar and cross-polar 

far-electric-fields. 

Figure 5 presents far-field iso-level plots provided by an 
antenna simulation (red contours) the far-fields provided by a 
conventional discrete Fourier transform (black contours) and 
far-fields provided by the accelerated Fourier Bessel transform 
(blue contours).  From inspection of Figure 5 it can be seen that 
the contours of the accelerated Fourier Bessel transform pattern 
agree very well with those of the discrete Fourier transform, i.e. 
there are no observable differences.  These patterns also agree 
well with the far-fields obtained directly from the simulation 
software with differences resulting from the first and second 
order truncation effects which generally become more 
pronounced at wider pattern angles.  As a further test, the polar 
acquisition surface was deformed into a curved “cap”.  The x-
polarized near-electric-field component can be seen presented 
in the form of a false-color surface plot in Figure 6. 

 
Figure 6.  x-polarised near electric field of offset reflector 

antenna sampled across a circular cap. 

This data was transformed to the far-field and compared 
again with far-field data obtained from the DFT and the direct 
far-fields. 

 
Figure 7.  Comparison of far-field amplitude pattern from 

accelerated Fourier Bessel transform and DFT 

 

Figure 8.  Comparison of far-field phase pattern from accelerated 

Fourier Bessel transform and DFT 

Figure 7 presents a comparison of the co-polar (left) and 
cross-polar (right) cardinal cuts together with the dB difference 
level.  Here, it can be seen that again, the patterns are in 
excellent agreement with the root mean square (RMS) dB 
difference level over the entire far-hemisphere better than -120 
dB, which is circa 50 dB below the next smallest component 
within a typical range uncertainty budget.  Here, the 
accelerated transform took ~0.5 seconds to run, which was 
approximately 0.1% (i.e. one thousandth) of the time that the 
DFT took to calculate the equivalent far-field data running on 
the same workstation.  Figure 8 presents a similar plot 
comparison of the far-field phase functions which from 
inspection are equally encouraging. 

As the computational electromagnetic measurement 
simulations yielded such encouraging results, the new 
transform was harnessed to process plane-polar near-field 
measurements of an x-band 4.9 m wide, seven tile, passive, 
planar, space-born, slotted array, synthetic aperture radar 
(SAR) antenna which is shown undergoing assembly 
integration and test in Figure 9 with details of the antenna and 
mission being available in the open literature, e.g. [10, 11]. 
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Figure 9.  StriX α deployed 4.9 m x 0.7 m, X-band, 7 panel,  

synthetic aperture radar, undergoing deplyment test. 

The measured near-field amplitude (left) and phase (right) 
of the antenna at 9.65 GHz can be found presented in Figure 
10, where the horizontal axis represents the measurement 
radius, and the vertical axis the polar angle in degrees.  This 
antenna comprises a demanding measurement as the antenna’s 
electrical size corresponds to a high-gain (~44.5dBi) “sharp” 
far-field antenna pattern requiring correct sampling, and a 
reliable modal expansion, cf. Section 2 above. 

 
Figure 10.  plane-polar amplitude (left) and phase(right) of a 5m 

wide X-band passive SAR antenna 

The classical plane-polar, half wavelength circumference 
sampling criteria in the angular axis may be expressed as [6], 

 ( )2 a Mφ λ λ π′∆ = + =  (14) 

Here, a is the maximum radial extent (MRE), i.e. the 
circumscribing radius of the antenna measured from the center 
of rotation which must be less than the maximum radius of the 
acquisition disk.  In the event that the AUT exhibits rotational 
symmetry then this criteria may be relaxed.  We can interpret 
M as the maximum order of Bessel function, cf. spherical 
sampling theory, which we can use to place an upper limit on 
the maximum number of terms required, and the number of 
angular measurement points.  Furthermore, we are able to vary 
this over the radial summation as this represents an upper limit, 
and as we require fewer terms when processing central rings, 
cf. Figure 11.  Explicitly, we may use, 
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Where M is understood to be the nearest integer rounded 

towards positive infinity with the constraint that M < (nφ - 2)/2, 
which represents the highest order mode that may be computed 
from the measured data.  Here, we are using a safety factor of 
one wavelength which corresponds to adding ~6 additional 
terms, cf. the spherical case [6], where here we have the benefit 
of scaling the “safety factor” with increasing frequency as 
opposed to being a fixed integer, e.g. 10.  However, M should 
be estimated prior to commencing the near-field acquisition to 
insure reliable far-field data can be obtained.  Figure 11 

contains a plot of the magnitude of the Fourier coefficients of 
the plane-polar measurement (as shown in Figure 10) presented 
in the form of a false color plot where, it is clear that as the 
measurement radius increases, there is a larger amount of 
power contained within higher order Fourier coefficients.  
Here, the zero-order term has been shifted to the center of the 
mode spectrum.  Note the symmetry observed here is a result 
of the behavior of the Fourier transform and specifically, the 
symmetry of the transform of the cosine function, cf. equation 
10 above.  The right hand side of Figure 11 shows the same 
spectrum only here the higher order modes have been extracted 
to illustrate that equation (15) reflects the natural behavior. 

  
Figure 11.  False colour plot of power in Fourier coefficients 

plotted as a function of measurement radius (left), again with 

higher order modes extracted as per eqn (15) (right). 

The plane-polar near-field data was transformed to the far-
field using the transformation developed above and can be seen 
presented in Figure 12.  Here, the far-fields are presented 
tabulated on a polar spherical grid (left) and on a true-view grid 
(right) [8]. 

 
Figure 12.  Far-field amplitude pattern presented in polar format 

(left), and in true-view format (right). 

Here, the very “sharp” form of the far-field pattern, i.e. the 
very narrow beam-width and the complex side-lobe structure is 
clearly evident.  Once the plane-wave spectrum is obtained, it 
is possible to compensate for the separation between the AUT 
and the probe, and to reconstruct the corresponding radiating 
aperture illumination function [8].  This can be seen presented 
in Figure 13 which contains the amplitude (a) and phase (b).  
Here, the seven individual radiating panels of the SAR antenna, 
cf. Figure 9, can be seen clearly in both the amplitude and 
phase pattern functions.  However, it is also possible to see a 
small phase step in the phase of the lower two tiles which was a 
feature that was identified and remedied during the phase 
adjustment that was performed on each panel prior to launch.  
The use of this sort of non-invasive, non-destructive diagnostic 
post-processing is commonplace for the configuration of 
passive  array antennas [8]. However its success, crucially, is 
predicated upon the reliable determination of the plane-wave 
spectrum through the use of rigorous transformation algorithms 
such as that which is being employed here.  Conversely, Figure 
13(c-d) shows the transformed far-field patterns in elevation 
and azimuth respectively.  There is a periodic region of no-



slots at the junction between two adjacent panels which leads 
to periodic grating-like side-lobes appearing in the 1D far-field 
azimuth pattern seen in Figure 13(c). However, since these 
grating lobes are below -15dB, the impact on azimuth 
ambiguity during SAR imagery acquisition is insignificant as 
seen in [12].  Here it may be concluded that Fourier-Bessel 
pattern is more reliable since there is no approximation, i.e. 
polynomial interpolation, error. 

 
(a)  

(c) 

 
(b)  

(d) 

Figure 13.  Reconstructed near-field (aperture plane) amplitude 

(a) & phase (b), transformed far-field amplitude azimuth cut (c) 

& elevation cut (d). 

IV. SUMMARY AND CONCLUSION 

In the previous sections a new, rigorous, computationally 
efficient accelerated Fourier Bessel polar near-field to far-field 
transform has been developed.  Preliminary simulated data was 
used to verify and validate the planar and non-planar polar 
transforms against known reference data.  Based upon this 
success, the algorithm was used to process range measurements 
of a high gain passive slot-array SAR antenna yielding 
encouraging results in this demanding application.  The new 
transform is based on the following assumptions: either a 
rotationally symmetric first order probe is used [6], or the 
probe is counter rotated during the near-field acquisition [8], 

that the data is acquired using fixed δρ′ and δφ′ per φ cut (this 
is in common with other applications and is not a limitation of 
this particular implementation per se), and that a positive 
(suppressed) time dependency is assumed throughout.  It is also 
worth remembering that a mixed-radix 1D FFT is used to 

implement the initial φ transform of the measured near-electric-
fields.  Utilizing a factor of 2 FFT and zero padding the polar 
near-field data will yield erroneous results.  This is also the 

reason for the requirement that the data is periodic in the φ-

axis, cf. spherical case, and does not span the full 2π radian 

range with redundant points at both φ′ = 0 and φ′ = 2π.  And, 
lastly, that this transform is rigorous, i.e. it does not rely upon 
approximation, e.g. piecewise polynomial interpolation, least 
squares fitting, the solution of a linear system of simultaneous 
equations, etc.  Although the far-field data will be provided 

tabulated on an equally spaced grid of points in the φ-axis (that 
will contain a power of 2 points) the user is free to specify the 

number and location of points in the θ-axis.  This can be very 
convenient in applications such as that presented above where 
we are free to compute large number of points around the 
boresight direction of a high gain antenna without needing to 
compute large amounts of data at other angles that are perhaps 
not of interest. 

It is crucial to recognize that this transform is extremely 
efficient with run times on the order of circa 0.1% of the time 
that it would take for an equivalent discrete Fourier transform 
to compute equivalent far-field data, and that are often faster 
than when using interpolation and two-dimensional FFT based 
algorithms which require large amounts of zero-padding to 
obtain the density of data points about the main beam direction 
required to reliably produce main-beam information such as 
beam-width, null-depth and first side-lobe level and location. 

The future work is to include examining in greater detail 
the behavior of the Fourier coefficients, cf. Figure 11 above, 
with a view to exploring ways in which this can be used to 
improve the accuracy of the measurement by extracting non-
physical features. 

ACKNOWLEDGEMENT 

The authors gratefully acknowledge the very valuable 
support of Bernd Gabler of German Aerospace Center (DLR). 

REFERENCES 

[1] Y. Rahmat SamiI, V. Galindo-Israel, R. Mittra, “A plane-polar approach for far-

field reconstruction from near-field measurements”, IEEE Trans., 1977, AP-25,pp. 

631-641. 

[2] V. Galindo-Israel, Y. Rahmat-Samii, R. Mittra, “A Plane-Polar Approach For Far-

Field Reconstruction From Near-Field Measurements”, Int. IEEE / AP-S Symp., 

Seattle, June, (1979). 

[3] C.F. Stubenrauch, “Planar near-field scanning in polar coordinates: A feasibility 

study”, NBS Rep. SR-723-73-80, 1980. 

[4] J.C. Bennett, “Fast Algorithm for the Calculation of Radiation Integral and its 

Application to Plane-Polar Near-Field/Far-Field Transformations”, Electronic 

Letters, 11th April 1985, Vol. 21 No. 8, pp. 343-344. 

[5] P.F. Wacker, R. Severyns, “Near-field Analysis and Measurement: Plane Polar 

Scanning”, IEE Conf. Pub. 219, Pt 1., pp.105-107 1983. 

[6] A.D. Yaghjian, “An Overview of Near-Field Antenna Measurements”, IEEE 

Trans., 1986, AP-34, pp. 3 W 5 

[7] M.S. Gatti, Y. Rahmat-Samii, “FFT Applications to Plane-Polar Near-Field 

Antenna Measurements”, IEEE Transactions on Antennas and Propagation, AP-36, 

June, pp. 781-791, (1988). 

[8] S.F. Gregson, J. McCormick, C.G. Parini, “Principles of Planar Near-Field 

Antenna Measurements”, IET Press, 2007, pp. 93, ISBN 978-0-86341-736-8. 

[9] H.P. Hsu, “Applied Fourier Analysis”, Harcourt Brace, College outline Series, 

ISBN 0-15-601609-5, 1984. 

[10] B. Pyne, H. Saito, P. R. Akbar, K. Tanaka, J. Hirokawa and T. Tomura, "Flight 

Model 7-Panel Slot-Array Deployable Antenna Measurement Results of MicroX-

SAR 100kg Class Demonstration Satellite," 2020 50th European Microwave 

Conference (EuMC), 2021, pp. 816-819, doi: 

10.23919/EuMC48046.2021.9338188. 

[11] B. Pyne, P. R. Akbar, V. Ravindra, H. Saito, J. Hirokawa and T. Fukami, "Slot-

Array Antenna Feeder Network for Space-Borne X-Band Synthetic Aperture 

Radar," in IEEE Transactions on Antennas and Propagation, vol. 66, no. 7, pp. 

3463-3474, July 2018, doi: 10.1109/TAP.2018.2829805. 

[12]  B. Pyne, H. Saito, P. R. Akbar, J. Hirokawa, T. Tomura and K. Tanaka, 

"Development and Performance Evaluation of Small SAR System for 100-kg Class 

Satellite," in IEEE Journal of Selected Topics in Applied Earth Observations and 

Remote Sensing, vol. 13, pp. 3879-3891, 2020, doi: 

10.1109/JSTARS.2020.3006396 

 

A
m

p
li
tu

d
e

 [
d
B

]



 


